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In a recent investigation [1], it was discovered that small oscillatory loadu have a much 
stronger influence on the creep rate of stiff crystalline polymer materials, than one wouId 
expect at first glance. In the present work, it is shown that this phenomenon reveals a 
wide class of problems on the deformation of polymers in connection with which the in- 
fluence of small vibrations exista, and may become a determining factor. 

The main cause of the strong influence of small vibrations on the deformation of 
polymers is the fact that the polymer materials are viscoelastic and have a low thermal 
conductivity. Hence, even under the influence of small vibrations the polymers may heat 
up rapidly. The heating leads to a change in the deformation characteristics of the material, 
in particular to a lowering of the stiffness. This leads to an increase in deformation which, 
in turn, causes additional heating. 

In this paper we describe a general approach to the study of the influence of small 
vibrations on the deformation of stiff polymers. The basic underlying assumption is that 
this influence arises as a result of temperature change due to vibrations and the conse- 
quent change in the deformation properties of the material. Based on this hypothesis plus 
some additional assumptions, two complete systems of equations are obtained : one for the 
average stress and strain states in a variable but known temperature field; the other for 
the characteristics of the ‘vibration’ field and the temperature. Based on experimental 
values of the mod& of elasticity and viscosity of the materials investigated, together 
with certain estimates on terms entering the dynamic equations of the second system, the 
viscosity and inertia terms are neglected while the dependence of the modulus of elasticity 
on the temperature is retained. The viscosity is taken into account only in the energy 
equation, where it determines the additional heating as a result of the dissipation of the 
energy of small vibrations. In particular, the proposed approach provides a known basis 
for the investigation of the influence of vibrations on the strength of polymers, as well as 
for the investigation of the dynamic stability of elastic equilibria of polymer structures. 

1. Consider a stiff but sufficiently viscous polymer material such as caprone or 
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caprolite. 

Under continuous influence of a slowly varying (or steady) load, these materials 
exhibit relaxation properties which depend essentially on temperature. Figure 1 ahows 
creep curves for caprolite at different temperatures which are typical for such materials, 
thus corroborating the above noted statement. 

FIG. 2 

Under the action of a sinusoidal oscillatory load, the materials under investigation 
behave as viscoelastic bodies characterized by the elastic modulus E ‘and viscosity q 
(or the frequency o dependent modulus which we shall call the ‘loss’ modulus, and 
which is related to the viscosity by E “= ~01, depending on the frequency, on the 
temperature T, and on the Poisson’s ratio V, which is asaumed to be independent of the 
frequency and temperature. Figure 2 shows the temperature dependence of E ‘and E ” 
taken from [2] for polystyrene, a material which is representative of the type under in- 

vestigation. 

An analysis of the experimental data shown leads to the following conclusions : 

1) Defotmation characteristics of materials of the type under investigation under the 
action of slowly varying loads depend essentially on the temperature. 

2) For the fixed frequency oscillations, the modulus of elasticity E’depends on the 
temperature. It decreases relatively slowly till it reaches a certain critical temperatare 
T,, beyond which it decreases rapidly, and changes by several orders of magnitude over 
a small temperature interval. Indeed, upon reaching the critical temperature, the material 
loses its former structural properties. 
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3) Within the temperature range of practical interest, the loss modulus E ‘: for a fixed 

frequency of oscillation, increases with the rise of temperature, first slowly, then qnickly. 

It reaches a maximum at the same value of the critical temperature then it begins to de- 

crease rapidly. 

4) For T < T,, E “is at least an order of magnitude smaller than E’, which never 

decreases below IO9 dynes/cm2 or about 10’ kg/cm I. In this temperature range, the acoustic 

velocities in the materials under investigation are high (of the order of 10’ cm/set), 

hence in the investigation of low frequency vibrations (of the order of 100 cps and less) we 

may exclude from the investigation wave phenomena for objects of dimensions of the order 

of one meter or less and assume the stress fields to be quasistatic. 

The preceding conclusions permit a considerable simplification of the investigation 

the influence of small vibrations on the deformations of polymer materials. 

2. To illustrate the general approach, we will study a very simple example: The de- 

formation of a prismatic bar with cross-sectional area S under the action of a compressive 

or tensile longitudinal force PO = or,-,&‘. Let us assume that under the influence of static 

or slowly varying load the material behaves as an ideal elastic body with a temperatare - 

dependent elastic modulus E (I?. For short time intervals, materials of the type examined 

in section 1 behave like such models (here and from now on an effective value of the 

elastic modulus is taken). In addition to the basic load P,, the bar is subjected to an 

oscillatory load P* = U* S cos at, where the amplitude of the oscillations u* is mnch 

smaller than ~0. In view of the smallness of amplitude of the average oscillatory 

stresses in comparison with the average stresses due to the basic load when the averages 

are taken over a time interval which is large compared with the period of oscillation, but 

small compared with the characteristic time of temperature variation, we may write the 

usual equations of elasticity containing a temperature dependent elasticity modulus and 

possessing a trivial solution 

(6) = 00, (e) = u. / E (7’) (2.1) 

Here 0 is the stress, e is the strain, and the symbol <> denotes the mean valne in 

the sense described above. In view of their quasistatic character, the longitndinal vibra- 

tions of a bar under the influence of the additional oscillatory load are given by 

dae’ de’ 
m-dta-l- q _dt + E’S = 6, co.3 ot 

Here e’ is the oscillatory strain, m = pla / 2, I is the length of bar, p is the 

material density (remembering that under the action of the oscillatory load, by assumption, 

the material behaves as a viscoelastic substance). Noting that the characteristic time of 

variation of the temperature and consequently of the two moduli E ‘and E”is math greater 

than the period of oscillation, so that the two moduli may be treated as constants, the 

solution of (2.2) may be written as 

a’ = ([E 
6? cos (ml - 6) E” 
- mmS]8 + E”r}‘/.’ ‘an8=&__mo,~ (2.3) 

At the same time, the average energy dissipation per unit volume of material per unit 
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Q= 
sin &x3*2 

2([E’ -nwP]2+_Pf” (2.4) 

For a bar length of the order of tens of cm, m is of the order of 10’ g/cm; and w is of 

the order not exceeding 10” set-I, so that, in view of the preceding discussion, E’& mot. 

Within the temperature range of practical interest, E” < E’ , as noted in section 1. Hence, 

tan 6 z sin 6 CC E” / E’ < 1, Neglecting small quantities in (2.3) and (2.4), we obtain 

5* cos cot 
e’ = E’(T) , Q 

sin 6 I%” =5q%yT,o), z”~E’----= 1 J” 
EP2 2n 

(2.5) 

where I “is the so-called ‘yielding loss’ which depends only on temperature and frequency 

and is independent of stress. The example leads to the following conclusions: The inertia 

and viscous terms in the dynamic equations for the oscillatory strains may be neglected. 

Within the previously shown temperature and frequency ranges, the oscillatory strains for 

materials of the type under investigation may be computed from the static stress-strain 

relations using the instantaneous valne of the modulus of elasticity E ‘(Tf. 

This conclusion may be reached just by estimating several terms in the dynamic 

equation (2.21, without obtaining its solution. Indeed, the order of magnitude of the ratio 

of the first (inertia) and third terms in the left hand aide of (2.2) is ~0212 / E’ 4 1, and 

the order of magnitude of the ratio of the second term to the third is E” / E’ < 1, whence 

(2.5) follows* 

3. Based on the preliminary estimates of the preceding section, we will examine the 

gsaeral three-dimensional case. Consider a body composed of a polymer material of the 

type under investigation acted upon by constant (or slowly varying) distributed body forces 

r together with surface forces p m distributed over a portion of the surface, S,; on the 

remaining portion of the surface S, , the displacements Uo are given. In addition to the 

preceding loading, the body is subjected to the following oscillatory loads : Body force 

g” CO9 @t and surface forces pa ~0s ot. The following assumptions are made with 

regard to the oscillating loads : 

(1) The amplitudes of the oscillating loads, go and pa are small in comparison with the 

basic loads gm and pm. 

(2) The periods of the oscillating loads are sufficiently large to neglect the dynamic 

effects and sufficiently small in comparison with the characteristic time of variation of the 

basic loads and temperature. 

We will now go on to the derivation of the basic relations, and begin by foimulating 

two basic hypotheses. 

First h7pothcsis. The influence of small oscillations on the deformation process for 

polymers of the type under investigation depends on the change brought about in the 
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properties of slow deformation of the material as a result of a temperature change. 

It is understood that this hypothesis narrows the class of materials and possibly fre- 

quencies to which the theory developed below applies. The experiments of Shesterikov 

and Lokoshchenko 131, conducted on duralumin and the experiments of Slonimskii and 

Alekseev, conducted on elastomers under conditions eliminating heating effects have 

shown, that oscillatory stresses may have an accelerating effect on the deformation process, 

the effect being independent of temperature. However, results published in [l] and other, 

similar experiments and analyses show that heating appears as the basic factor for 

materials of the type under investigation. 

Second hypothesis. The materials under investigation behave under oscillatory stresses 

as viscoelastic bodies with the viscoelastic properties E ‘and E “temperature dependent 

but not stress dependent. 

The characteristics of the stress-displacement state of the body may be represented 

in the form 

(3.1) 

Here, as before, the symbol <> denotes the average value of a quantity, averaged 

over a period of time which is large in comparison with the period of oscillation but small 

in comparison with the characteristic time of change for the particnler property ; the prime 

denotes the oscillatory component. Substituting (3.1) into the basic dynamic equations 

where (gl, gf are components of the vectors gm, and go 1 and averaging, we obtain 

(3.2) 

(3.3) 

(3.4) 

Under the influence of a slowly varying quasistatic loading, the stresses and strains 

within the body are interrelated by means of some rheological relations which depend 

implicitly on temperature. We may take as an example a nonlinear model generalizing the 

thermorheological simple model used in [S] for which the following relations between the 

components of the stress tensor Qj and the component of the small strains tensor Eij: 

hold 

E VI Sij = 1+y Qj - 

0 

@l h(0--Q(@I & (3.5) 
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e ..=P(T--o)+$$[xxa 

where 

%j r Qj - l/S &j60(019 

+L- 
ddaa (4 iYz [q (t) -q(t)] dr] 

(3.6) 

0 

Eij = ;- 1 (zj+g$ q(t)=S;F[T(T)](Iz: 
0 

(3.7) 

Here F is s-e function of the temperature, T,, is the ambient temperature while 

@I, @!J, and VI, yS are displacement and dilatational relaxation and creep functions, 

reap@ivcl~ ;.tbd~e mayc .gbrerally speaking, depend on the strain and stress tensor in- 

varimtr, r*ytorxpHly. ?s particular, for Cp, s QS E ‘y, E y, G () we obtain rela- 

tions for th destic b&y, tIterme stresses being taken into account 

(3.8) 

Fm h fir& hyppthssim, l mall vibrations affect the relaxation and creep functions 

bghthren$t btng~ ia temperature, and we can assume that relations (3.5) and (3.6) may 

Se d)p&d to the everaged qa@tiee 

(o.$ = a t(ed --P V - TO)] - 

(3.9) 
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Further, in Equations (3.4) the inertia terms are of order po2u (u is the order of 

magnitude of the amplitude of vibrational displacements). From the second hypothesis, the 

oscillatory stresses Uij' are related to the oscillatory displacements by the conatitutive 

equations of the viscoelastic body. Thus, it may be shown in a manner completely analog- 

ous to that of section 2 that the first term in the right-hand side of Equation (3.4) com- 

prises the terms which represent the elastic effect and are of the order E’ (2’) U / l2 (I 

is a characteristic length of the body), plus the terms which represent the viscous effect 

and are of order E” (T)U / 12. A ssuming tbe moduli E ‘and E “to have the orders of 

magnitude given in section 1 and considering the frequencies o of up to IO’ set 
-1 

, we may 

neglect in Equations (3.4) the viscous and inertia effects. Now setting uta = aic,a cos ot, 

Ui’ = uto ~0s ot, where the quantities with superscript o (amplitudes) are assumed to 

vary slowly with time, we obtain for the amplitudes the usual system of equations of the 

theory of elasticity 

Ry the neooad hypPrhenisr 6 ‘is independent of the average stresses. To obtain a 

complete aya’tem af nqqnatioaa, we maat have, in addition to (3.10). the energy equation. 

R&ntll ttae the energy eqsatian in the form (cf. [6] 

m PT 
PC 3i + 3 (I - Xv) at 

LE(T&=hAT+Q 
a 

(3.11) 

whwp. ~lb w,.respe~vo~~ the density, specific heat and thermal conductivity of the 

maferhl, while Q is the instaataneotis energy dissipation per unit volume per unit time. 

Since the characteristic time for tcmpenture change is much greater than the period of 

oecillation. it is possible te write this equation in averaged form. Averaging the dissipation, 

re,obtaip ( Q> ;5 91 -f- #& nrhere Qx is the average viscous dissipation of energy 

bud on the avegaged deformation, and Q, is the average viscous dissipation of energy doe to 

tkt vibritioaa which ia, as #It-n in [7]. equal to 

where 1”. (T, 0) represa& the yielding losses diecussed in section 2 and is independent 

of the average UMsee. byvtitne 01 the second hypothesis. Estimates show that Q, and the 

average value of the recond term in the left hand side are negligible in comparison with Q2, 

Retaining the symbol T for the average tetsperature.we may write the energy equation as 

fPiIOWS 
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Thus, under the assumptions used, it turns out that, thanks to the elimination from the 

energy equation of terms which correspond to the average deformations, the system of basic 

equations separates into two systems : System (3.10) and (3.13) which yields the stress and 

deformation amplitudes and the temperature, while the average stresses and deformations are 

obtained from system (3.3) and (3.9). in which the temperature is taken to be a known func- 

tion of time and position. Once again, we stress that the material model represented by (3.9) 

is taken for illustrative purposes only and may be replaced by another model. 

The boundary conditions for the system (3.3) and (3.9) are 

(Qio) na = P*” on Si, (Ui>= UOi on Sz (3.14) 

where na are the components of the unit vector normal to the body surface ;pim, and uoi 

are components of the vectors P, and ~0. For equations (3.10) and (3.13), we shall adopt 

boundary conditions of the form 

c5iaana = pia On Sl, U.U= 0 on s2 

aT,&z+*(T-TTb) = h 

(3.15) 

Here 0 and h are point functions on the body surface; 8 / an is the derivative in 

the direction normal to the body surface. In addition, we have the initial condition 

T = To for t =O (3.16) 

4. We will consider some actual problems which arise in connection with the general 

investigation developed above. 

(1) As a first example, consider the one-dimensional problem of the deformation of a 

circular cylindrical bar with a constant average load and subjected to a small oscillating 

load, all properties to be uniformly distributed over the entire cross-section of the bar. 

Equations (3.9) then take the form 

(4.2) 

Here ua is the applied, constant, average stress ; the function F is assumed to be 

known. A simplified form of the energy equation should be used. Since the temperature 7’ 

fs also assumed to be averaged over the cross-section of the bar, the resistance to heat 

conduction must be assumed to be concentrated on the cylindrical part of the surface of 

the bar. A similar averaging procedure was used by Ratner and Korobov 181 in their initial 

investigation of the problem concerning the heating of polymers by vibrations in the absence 

of an average stress field. We obtain 

dT 
dt - 2pc 

el”(T,~)-~(T-To) 

Here u is the surface conductance for the bar surface, u* is the stress amplitude, o 

is the fraqnsncy and ra is the radius of the bar. 
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The solution of Eqnation(4.3) with the initial condition (3.16) determines a function 

T (t) which may be substituted into (4.1) to yield the average deformation as a function of 

time.The functions YandF are obtained here in the manner similar to that used in a problem 

[I] in the absence of oscillatory stresses, at various constant temperatures and under the 

constant applied stress oO. The treatment outlined here differs little from that given in 

Ill. 

(2) In investigating the dynamic stability of a body (a detailed development of the 

problem may be found in the monograph of Rolotin [9]), small oscillating stresses are 

applied to the body which in the state of elastic stability and the resultant motion is ex- 

amined. The equilibrium state is either stable or unstable depending on whether or not the 

displacements arising from this motion remove the body from within a small neighborhood 

of the undisturbed equilibrium state. However, for polymer materials, even vibrations 

whose amplitudes are very small in comparison with the original loading may lea&to sub- 

stantial heating and consequent change in the elastic constants. Therefore, a correct 

study of the dynamic stability of such materials, generally speaking, must be based on a 

nonlinear formulation developed in the preceding section. 

As an example let us consider a circular cylindrical bar which is clamped at the ends 

and is under a compression load P, applied axially, without considering, at present, the 

parametric resonance phenomena. 

Let us apply to the bar sn additional oscillatory axial load p* = ,J*S co,q at, As 

before, the amplitude of the oscillatory stress U* will be taken as small in comparison 

with the basic stress 00. The trivial solution (2.1) which describes the linear form of 

equilibrium of the bar becomes unstable if 

4aP.E (T) Z po>p,= p 
where I is the length of the bar and I is the moment of inertia of the crose-section of the 

bar. 

The temperature equation will again be taken in the form (4.3). The solution 2’ (t) of 

Equation (4.3) with initial condition (3.16) is a monotonically increasing function which 

varies from T = To to some value 2’ = T, , where 7’ satisfied the equation 

(4.5) 

As the temperature increases, Young’s modulus E (‘I’) decreases, SO that at some 

!I’< Tz the value of E (T) becomes less than POP / 4nsZ, then PO exceeds the critical 

load, and buckling takes place, resulting in the loss of stability of the bar. Numerical 

calculations show that this can occur at oscillatory stress amplitudes which are small in 

comparison with the basic stress. For example, take a bar whose length I = 200 cm and 

cross-sectional area S = 100 cm’. Suppose that the moment of inertia of the cross-section 

of the bar is 800 cm', so that, takingS the modulus of elasticity E at T = 20 ‘C equal to 

l Here and in the following the data for polystyrene has been used for illustrative 

purposes. 
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2.5 x 10” dynes/cm’, we obtain a critical force PE = 20 L at T = 20°C. Let us take an 

axial load of Pu = lot, which is half the critical value. If we take the specific conductance 

aa u = 20 ergslcma-sec*C, then we shall find that at cr* = 4 x 10’ dynes/cm’, or approx- 

imately 4 kg/cm’ , and a frequency w = IO’ se~-~ (which corresponds to approximately 

150 cyclea/sec), the temperature of the bar :viIl increase over a period of time by 100°C , 
the modulus of elasticity will decrease to half its former value, so that the load will 

exceed the critical value and the bar will buckle. It should be pointed out that the influ- 

ence of vibrations increases strongly with the resultant rise in temperature. 

(3) In conclusion, we will state some qualitative observations concerning the applica- 

tion of the previously developed approach for the investigation of the influence of vibra- 

tions on the strength of polymers. 

i 
FIG. 3 

Polymer materials, like most solid materials 

contain many cracks (or other stress foci). Small 

oscillatory stresses produce near the creak ends, 

oscillatory strains of large amplitudes which result 

in generation of heat at e higher rate and, because of 

poor heat conduction, in substantial local fncre~ses 

in temperature near the crack edges. It is known [IO, and 

IX] that opposite edges of cracks in polymer materials 

are tied together near their ends by thin fibers, the 

stresses in these fibers playing a fundamental role in 

providing bonding forces which check the propaga- 

tion of cracks. (Fig. 3). According to S.N. Zhurkov’s 

kinetic representation, the speed of deformation of 

these fibers ia proportional to 

I u - 75 
exp -- RT I 

where U is the activation energy, y is a material constant, o is the stress in the fiber, 

R is the universal gas constant and T is the temperature. It is evident from (4.6) that an 

increase in temperature near the end of a crack, resulting from the vibrations, will greatly 

alter the speed of deformation of the fibers, thus altering the bonding forces and the bond- 

ing modulus. Since such a temperature increase is only local, it may not produce any in- 

crease in the rate of deformation of the entire body, but it will change the bond modulus 

near the end of the crack, thus influencing the strength of the material. The change in 

material strength resulting from local heating near crack ends in the presence of oscil- 

lating loads was first noted by Bartenev [12]. 

1. 

The author is deeply grateful to N.I. Malinin for his valuable comments. 
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